Η περίμετρος θα είναι πάντα άρτια, επειδή το μήκος πολλαπλασιάζεται επί 2, καθιστώντας το άρτιο, και προστίθεται στο πλάτος που έχει πολλαπλασιαστεί επί 2, καθιστώντας το επίσης ακόμη και. Αλλά αν και το μήκος και το πλάτος είναι περιττό, τότε το εμβαδόν θα είναι περιττό, που σημαίνει ότι είναι αδύνατο η περίμετρος να είναι ίδια με το εμβαδόν.
Μπορούν τα σχήματα να έχουν την ίδια περιοχή και περίμετρο;
Ένα δισδιάστατο ισοδύναμο σχήμα (ή τέλειο σχήμα) είναι εκείνο του οποίου το εμβαδόν είναι αριθμητικά ίσο με την περίμετρό του. Για παράδειγμα, ένα ορθογώνιο τρίγωνο με πλευρές 5, 12 και 13 έχει εμβαδόν και περίμετρο και τα δύο έχουν αριθμητική τιμή χωρίς μονάδα 30.
Ένα τετράγωνο θα έχει πάντα το ίδιο εμβαδόν και την ίδια περίμετρο;
Οποιοδήποτε ορθογώνιο θα έχει πάντα περισσότερα από αυτά τα μπλοκ εκτεθειμένα προς τα έξω από ένα τετράγωνο της ίδιας περιοχής. Αυτό αποδεικνύει ότι ένα ορθογώνιο θα έχει πάντα μεγαλύτερη περίμετρο από ένα τετράγωνο με το ίδιο εμβαδόν. Αυτό σημαίνει ότι αν ένα ορθογώνιο και ένα τετράγωνο έχουν την ίδια περίμετρο, το ορθογώνιο πρέπει να έχει μικρότερο εμβαδόν.
Μπορεί η περίμετρος να είναι μικρότερη από το εμβαδόν;
Η περίμετρος είναι πάντα μεγαλύτερη εκτός από ένα (Σχήμα G). … Το εμβαδόν και η περίμετρος είναι ίδια. Το ίδιο συνέβη αν εκεί έχετε ένα ορθογώνιο που έχει μήκος 6 και πλάτος 3. Ο Πίνακας 3 (δεν έδωσαν το σχολείο τους) έψαξε να βρει ένα σχήμα που έχει περίμετρο αριθμητικά διπλάσια από το εμβαδόν.
Αυξάνεται η περίμετρος με το εμβαδόν;
Αν ξεκινήσετε με ένα ευθύγραμμο σχήμα, όταν αυξήσετε την περιοχή, η περίμετρος θα αυξηθεί.